

Raise3D Tough 2K Grey V1 Resin Technical Data Sheet¹

© 2023 by Raise3D. All rights reserved. Specification subject to change without notice.

Tough and durable resin for functional applications

Tough 2K Resin is a tough and strong material with excellent ductility, toughness and impact resistance. As a result, it is ideally suitable for end-use parts where performance and durability are needed.

Features

- 45 MPa tensile strength
- 35% elongation at break
- 31 J/m Izod notched impact
- 2158 MPa Young's modulus
- 68°C HDT @ 0.45 MPa

Benefits

- Tough and strong
- Excellent toughness and impact resistance
- Strength and rigidity similar to ABS

Applications

- Strong and stiff prototypes
- Jigs and fixtures
- Manufacturing aids
- Housings and enclosures

¹ The cover shows FPGA enclosure.

Physical Properties

Proporty	Testing Method	Typical Value		
Property	Testing Method	Metric	Imperial	
Appearance	/	Liquid, Grey		
Density (liquid resin)	ASTM D4052	1.150 g/cm ³	9.60 lb/gal	
Density	ASTM D792	1.20 g/cm ³	10.01 lb/gal	
Liquid Viscosity	ASTM D7867	481 cps@25°C	481 cps@77°F	
Shore D Hardness	ASTM D2240	87D	87D	

Mechanical Properties*

Duonoutr	Testing Method	Green		Post-Cured	
Property		Metric	Imperial	Metric	Imperial
Young's Modulus	ASTM D638	1334 MPa	193.47 ksi	2158 MPa	312.98 ksi
Tensile Strength	ASTM D638	25 MPa	3.63 ksi	45 MPa	6.53 ksi
Elongation at Break	ASTM D638	59%	59%	35%	35%
Flexural Modulus	ASTM D790	1347 MPa	195.36 ksi	2315 MPa	335.75 ksi
Flexural Strength	ASTM D790	53 MPa	7.69 ksi	90 MPa	13.05 ksi
Notched Izod	ASTM D256	36 J/m	0.67 ft-lbf/in	31 J/m	0.58 ft-lbf/in

*Note:

All test specimens were printed with Raise3D DF2 printer (2 mW/cm 2 at 405 nm, 100 μ m thickness, 14s).

All post-cured test specimens were cured with DF Cure for 20 minutes per side at room temperature.

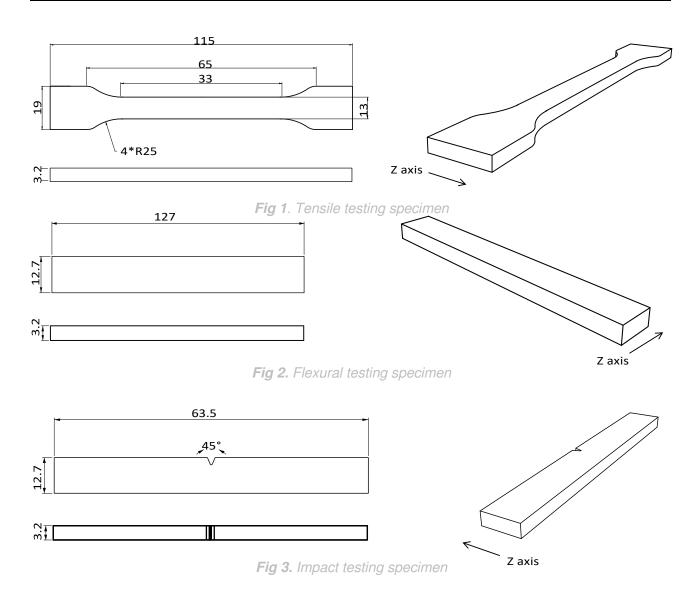
All specimens were conditioned in ambient lab conditions at 20-25 °C / 40-60% RH for 16 to 24 hours.

Test performance differs depending on part geometry, print placement orientation, print settings and temperature.

Thermal Properties*

Duamantu	Testing Method	Post-Cured		
Property	Testing Method	Metric	Imperial	
Heat Deflection Temp. @0.45 MPa/66 psi	ASTM D648	68°C	154.4°F	
Heat Deflection Temp. @1.82 MPa/264 psi	ASTM D648	53°C	129.2°F	

*Note:


All test specimens were printed in 100µm thickness with Raise3D DF2 printer (2 mW/cm² at 405 nm, 100µm thickness, 14s) and cured with DF Cure for 20 minutes per side at room temperature.

All specimens were conditioned in ambient lab conditions at 20-25 °C / 40-60% RH for 16 to 24 hours.

Test performance differs depending on part geometry, print placement orientation, print settings and temperature.

Testing Geometries

Disclaimer

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End-use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Raise3D materials for the intended application. Raise3D makes no warranty of any kind, unless announced separately, to the fitness for any particular use or application. Raise3D shall not be made liable for any damage, injury or loss induced from the use of Raise3D materials in any particular application.

